
Introduction to Java IV:
Exceptions

CS 1025 Computer Science Fundamentals I

Stephen M. Watt
University of Western Ontario

Things Can Go Wrong

• When developing software we should program defensively.
– Users might give wrong input.

– Our program might have bugs that lead to invalid data.

– Some necessary resource might not be available.

– Our program might be maintained by someone with an incomplete
(i.e. wrong) understanding of it.

– Versions of software we depend might change.– Versions of software we depend might change.

– Unexpected situations may arise from combinations of input.

– ...

• In practice this means we should
– Make our programs as obvious and as easy to understand as possible.

– Check for consistency / correctness of data before it is used,
especially if it is coming from a user or another, loosely coupled program.

• Myself, I spend about 1/3 the time making a correct program
and about 2/3 of the time making it clear, obvious and safe.

When Things Go Worng

• What should we do when we have wrong input or an
unexpected situation?
– Stop?

– Print a message and ignore it?

– Have local error checking and recovery?

– Have non-local error checking and recovery?

• Example of local error checking: C library error codes.
– Require lots of code to handle properly.

– Therefore rarely checked by programs.

=> Core dumps. Buffer overflow security holes.

• Example of non-local error checking: Exceptions.

Exceptions

• Objects that give information about what happened.

• Can be “thrown” by code up the call stack to some
higher-level routine that deals with unexpected situations.

• Each function specifies which exceptions it might throw.• Each function specifies which exceptions it might throw.

• The higher-level routines indicate what they are prepared
to handle with “try-catch” statements.

• Can have class hierarchies of exceptions to have
common handlers for base classes.

Example: Definition and Throwing
public class ExceptionExample {

public static class ArithmeticException extends Exception {

public String message;

public ArithmeticException(String what) {message = what; }

}

public static int isqrt(int n) throws ArithmeticException {

int i;

if (n < 0) if (n < 0)

throw new ArithmeticException("Negative argument.");

i = 0;

while (i*i < n) i++;

if (i*i != n)

throw new ArithmeticException("Not a square");

return i;

}

public static void main(String[] args) {

...

}

}

Example: Catching and Handling
public class ExceptionExample {

public static class ArithmeticException extends Exception { ... }

public static int isqrt(int n) throws ArithmeticException { ... }

public static void main(String[] args) {

try {

int n = 100;

int r = isqrt(n);

System.out.println("Square root of " + n + " is " + r);

n = 0;

r = isqrt(n);

System.out.println("Square root of " + n + " is " + r);

n = -4;

r = isqrt(n);

System.out.println("Square root of " + n + " is " + r);

n = 9;

r = isqrt(n);

System.out.println("Square root of " + n + " is " + r);

}

catch (ArithmeticException ae) {

System.out.println("Cannot compute square root: " + ae.message);

}

}

}

Example: Output

Square root of 100 is 10

Square root of 0 is 0

Cannot compute square root: Negative argument.

• In general, the Exception classes can come from anywhere
(be local to a class, to a set of classes, or part of a public pkg).(be local to a class, to a set of classes, or part of a public pkg).

• In general, the throw-er and the-catcher can be in different
modules/classes.

